Loading Events

Artificial Intelligence / Jan 13 @ 2:00 pm - 3:00 pm

SciML seminar: Explainable AI for identifying regional climate change patterns

Friday 13th January – 2-3pm – Online

Speaker – Zack Labe, Princeton


The popularity of machine learning methods, such as neural networks, is rapidly expanding in nearly all areas of Earth science. The interest in these tools also coincides with a growing influx of big data and the need for high efficiency in solving a range of tasks. In climate science, we often consider signal-to-noise or detection and attribution problems to help disentangle external climate forcing from natural variability.

In this seminar, Zack will show examples of how relatively simple classification problems can be combined with explainable artificial intelligence methods to improve our understanding of historical and future climate projections. We find to make these predictions that the neural networks are often leveraging regional patterns of forced change within observations and climate model large ensembles. These same explainable neural networks can be easily adapted for a wide variety of applications in understanding climate variability and climate change.

Dr. Zachary Labe is a postdoc at NOAA’s Geophysical Fluid Dynamics Laboratory and the Atmospheric and Oceanic Sciences Program at Princeton University. His current research interests explore the intersection of climate variability, extreme events, decadal prediction, and explainable machine learning methods. In addition to academic research, he is very passionate about improving science communication, accessibility, and outreach through engaging climate change data visualizations.



Jan 13
2:00 pm - 3:00 pm
Event Categories:
, ,